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(1) Introduction
The aim of this assignment is to investigate the performance of a series of algorithms for handling the 
linear advection equation in one dimension:

Where 'u' is a general conserved quantity and the constant coefficient 'a' represents the velocity of a 
travelling wave profile (ie the wave profile being the distribution of u as a function of x).

The techniques being investigated are:  Centred difference, first order upwind (donor cell), Lax-
Wendroff, MacCormack, second and third order monotonicity preserving, and donor cell and SHASTA 
flux corrected transport schemes.  These algorithms will be tested to see how they cope with the 
transport of sinusoidal wave profiles and with the transport of wave profiles containing discontinuities 
(more specifically, the transport of square and triangular wave profiles).  Following this conclusions 
will be drawn as to which routines are suitable for solving fluid dynamics problems.
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du
dt

+ adu
dx

= 0



(2) Method Of Simulation
The one dimensional advection equation is evaluated over a finite difference grid representing the value 
of u as a function of x.  The spatial domain is made effectively infinite by the use of periodic boundary 
conditions so that there is no limit to the period of time the simulation can run for.  If the mesh spacing 
is Dx and the time step is Dt, then given the assumption that no fluid particle should be able to move 
more than one cell in each iteration period we have the Courant-Fredricks-Levy condition:

|l| = |a| Dt/Dx £ 1

Where a is the wave velocity from the advection equation.

In the case of this assignment the wave velocity is a constant for the whole system, and so we can 
modify the finite-difference equations to be expressed purely in terms of ui and l.

The code written to evaluate the advection equation can be broken down into two main parts: the 
definition of the initial conditions and the evaluation of the finite difference representation of the 
advection equation.

(2.1) Initial Conditions:
The evolution of the wave profile is analysed under two main classes of initial conditions, those for 
smooth wave transport and for discontinuous wave transport.  In both cases 127 mesh points were used.

(2.1.1) Smooth Wave Transpor t:
In this case the quantity u is distributed along the mesh 
such that it represents a continuous sinusoidal wave 
(See fig. 2.1.1).  In this assignment, the values of ui 
were made to form two whole periods of a sinusoidal 
wave profile.

(2.1.2) Discontinuous Wave Transpor t:
Two different types of discontinuous wave are 
considered here, first-order discontinuous waves 
(square wave profiles, see fig. 2.1.2) and second-order 
discontinuous waves (triangular wave profiles, see fig. 
2.1.3).
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Figure (2.1.1):  Initial mesh distribution for the smooth wave 
transport problem.
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Figure (2.1.2):  Initial mesh distribution for the first-order 
discontinuous wave transport problem.
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Figure (2.1.3):  Initial mesh distribution for the second-order 
discontinuous wave transport problem.
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(2.2) Finite Difference Algorithms:
All of the following are Eulerian (stationary mesh) finite-difference schemes for the solution of the 
advection equation, as opposed to Lagrangian schemes, where the mesh moves with the fluid.

(2.2.1) Centre Difference:

By simple (first-order) centred spatial differencing of the advection equation we obtain:

ui
n+1 = ui

n  -  l/2 (un
i+1  -  un

i-1)

where,

l = a Dt/Dx

as before.  

The stability of this algorithm can be ascertained by finding the amplification factor G, defined via the 
spatial fourier transform giving equations of the form:

Un
k = U0

k { G[e-iklDx, e-ik(l-1)Dx, ...]} n

Clearly, for a stable algorithm 

|G| £ 1  +  O(Dt)

However, the centre difference algorithm produces:

|G|2 = 1  +  l2 sin2 (kDx)

Which must be greater than 1, and so centre differencing should be absolutely unstable for all values of 
k and l.

(2.2.2) First Order  Upwind (Donor  Cell):

The stability problems of the centre difference scheme lie in it's failure to reflect the upstream 
generation of signals.  If the spatial difference is calculated upstream, we find that:

ui
n+1 = ui

n  -  l (ui
n - un

i-1) if l>0

      -  l (un
i+1 - ui

n) otherwise.

This leads to an amplification factor of:

|G|2 = 1  -  2|l|(1-|l|)[1-cos(kDx)]

And so the algorithm is stable is |l| £ 1 (NB this means |G| < 1, and so the scheme must be diffusive). 
Also, if we consider the amplification factor for the exact solution:

G = e-lkDx

which represents a phase shift of lkDx per step (with no amplitude change), then comparing this to the 
phase shift of the centre difference scheme, which is:

arg(G) = arctan{ -|l| sin(kDx)/[1-cos(kDx)]}

we see that the scheme solution differs from the exact solution and corresponds to waves of differing k 
moving with different velocities, in other words the scheme is dispersive.  NB  the scheme loses it's 
dispersive properties when |l|=1/2, because at this point arg(G) = ± kDx/2, which is the exact value.
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(2.2.3) Lax-Wendroff:
The previous schemes were both first order, and so the lowest order term of the error in the expansion 
is a second order diffusion term, and this leads the the numerical diffusion problems that those schemes 
experience.  To solve this problem, we must include second order terms in the numerical solutions.  The 
Lax-Wendroff scheme was one of the first to do this effectively, and for the problem considered here, it 
has the following form:

ui
n+1 = ui

n  -  l/2 (un
i+1 - un

i-1)  +  l2/2 (un
i+1 - 2un

i + un
i-1)

Which leads to an amplification factor of:

|G|2 = 1  -  l2(1-l2)[1-cos(kDx)]2

and so the scheme is stable if |l| £ 1.  While this scheme is not diffusive, the third order error can still 
lead to dispersive effects under certain conditions, eg where the wave profile is discontinuous.

(2.2.4) MacCormack:
This second order scheme is closely related to the Lax-Wendroff algorithm, although this is not clear 
from it's appearance.  For the linear advection equation, it has the following two-step form:

‘ui
n+1 = ui

n  -  l(un
i+1 - un

i)

  ui
n+1 = 1/2 [ ui

n + ‘ui
n+1 - l(‘un

i  -‘un
i-1)]

This scheme has the same diffusion and dispersion properties as the Lax-Wendroff scheme.

(2.2.5) Second Order  Monotonicity Preserving:
In order to handle dispersive effects, implicit artificial dissipation can be used to take advantage of the 
strong dissipation of the first order schemes where required, but the scheme must revert to a higher 
order form elsewhere.  Given that for the advection equation considered here, the solution should 
preserve monotonicity (ie preserve the form of the wave profile of u), then a monotonicity preserving 
scheme could clip the flux to prevent overshoot in the regions of strong gradient (eg for shocks) to 
prevent the generation of short wavelength oscillations.  If the change is u is defined by a flux g such 
that:

ui
n+1 = ui

n  -  l(gi+½ - gi-½)

Then a general monotonicity preserving scheme is defined as follows:

gi+½ = ui
n  -  ½(1-l)‘Di+½ if l>0

gi+½ = ui+1
n  -  ½(1+l)‘D`i+½ otherwise

where the switching is peformed by

  Di+½ = s MIN{ |Di+½|, 2|ui+1 - ui|, 2|ui - ui-1|}

s = 0 if sign(ui+1 - ui)  „ sign(ui - ui-1)

s = sign(ui - ui-1) otherwise

‘D`i+½ = s' MIN{ |D'i+½|, 2|ui+2 - ui+1|, 2|ui+1 - ui|}

s' = 0 if sign(ui+2 - ui+1)  „ sign(ui+1 - ui)

s' = sign(ui+2 - ui+1) otherwise
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The second order (Lax-Wendroff) monotonicity preserving scheme is then defined by:

Di+½ = (ui+1 - ui) = - D'i+½

While it is not possible to find an amplification factor for this algorithm, the Courant-Fredricks-Levy 
condition should apply.

(2.2.6) Third Order  Monotonicity Preserving:
This scheme is exactly the same as the second order scheme, except:

Di+½ = (ui+1 - ui)  -  1/3 (1+l)(ui+1 - 2ui + ui-1)

D'i+½ = (ui - ui-1)  -  1/3 (1-l)(ui - 2ui+1 + ui+2)

(2.2.7) Flux Corrected Transpor t (Donor  Cell):
The underlying philosophy of the flux corrected schemes is to perform a two step calculation, where 
the first step uses a first order diffusion scheme and the second step removes that diffusion, subject to 
an extremum condition.  The first order scheme removes any ripples via diffusion, which is then 
removed without recreating the high-frequency waves.  This philosophy can be used to take advantage 
of some of the useful properties of the first order upwind differencing scheme, leading to the following 
two step finite difference form:

‘ui
n+1 = ui

n  -  { l-un
i+1 + (l+ - l-)un

i - l+un
i-1}

where,

l+ = MAX{ 0,l}

l- = MIN{ 0,l}

The flux correction step then has the form:

ui
n+1 = ‘ui

n+1 - fi+½  +  fi-½

where,

fi+½ = s MAX{ 0, MIN{ sDi+½-1, |‘fi+½|, sDi+½+1} }

and,

Di+½ = ‘ui+1 - ‘ui

s = sign(Di+½)

‘fi+½ = ½|l|(1-|l|)(‘ui+1 - ‘ui)

As with the monotonicity preserving schemes, it is difficult to identify an exact amplification factor for 
the flux corrected transport schemes.  However, we can approximate G via:

G = GA GT

Where GA and GT are the amplification factors for the anti-diffusion and transport stages respectively.  
If we assume the anti-diffusion will limit shorter wavelengths only (ie kDx~p), then:

GA » 1 + 2h[1-cos(kDx)]

where, h = ½|l|(1-|l|)
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This lead to an amplification factor of:

|G|2 » 1 - 12h2[1-cos(kDx)]2  -  16h3[1-cos(kDx)]3

and so the scheme should be stable for 0 £ h £ 3/8, ie that 0 £ l £ 1.  However, the scheme will only 
maintain positivity for 0 £ l £ ½.  Also, this scheme cannot cope with regions of zero flow velocity (ie 
when l = 0).

(2.2.8) Flux Corrected Transpor t (SHASTA):
This scheme is the same as the donor cell code above except that:

‘ui
n+1 = ui

n  -  ½(Q+un
i+1 - (Q- + Q+)un

i - Q-un
i-1)

where,

Q+ = (½ - l)2

Q- = (½ + l)2

and the flux correctior has the form:

‘fi+½ = 1/8(‘ui+1 - ‘ui)

With the same switching criteria as before. This scheme is stable if |l| £ Ö(7/12), and positivity is 
maintained for |l| £ 1/2.  The SHASTA scheme is more flexible than the donor cell flux corrected 
scheme due to it's ability to cope with regions of zero flow velocity.
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(3) Results
In the following results, the program was written to plot the wave front by taking into account the 
speed of the wave and the time elapsed.  This makes the simulation effectively Lagrangian, and also 
allows easy comparison of the results with the initial conditions.  All figures show the results of the 
simulation as a thin black line, and the expected results (ie the initial conditions) as a broad grey line.

(3.1) Transport of Smooth Wave Profiles
This section consists of a series of results from the analysis of the 8 algorithms when applied to the 
transport of smooth (sinusoidal) waves.

(3.1.1) Centre Difference Results:

As expected, the centre difference approach was found 
to be completely unstable for all values of l.  Figure 
(3.1.1) give an example (where l = 0.9) and shows how 
the wave profile was destroyed by violent dispersion 
even after only 70 iterations.  Also note that before the 
wave collapsed, the algorithm had caused the amplitude 
of the wave to grow, which is another symptom of the 
poor stability of the algorithm.

(3.1.2) First Order  Upwind Results:

The donor cell scheme produced a much better simulation than the centre difference algorithm, but as 
shown in figure (3.1.2a), the dissipative effects of the scheme are significant after a few hundred 
iterations.  Experimentation also confirmed the stability condition of the upwind scheme, and figure 
(3.1.2b) gives an example for this instability at |l| > 1.0.
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Figure (3.1.1):  Centre difference results after 70 iterations for 
l = 0.9.
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Figure (3.1.2a):  First order upwind results after 500 iterations 
for l = 0.9.
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Figure (3.1.2b):  First order upwind results after 100 iterations 
for l = 1.1.
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(3.1.3) Lax-Wendroff Results:
The results for the Lax-Wendroff algorithm show that it successfully solves the problem of rapid 
dissipation (see figure (3.1.3a)).  Also, the stability condition for Lax-Wendroff was also confirmed (see 
figure (3.1.3b)).

(3.1.4) MacCormack Results:
As might be expected, the MacCormack algorithm has almost identical diffusion and stability 
characteristics as the Lax-Wendroff.  Figures (3.1.4a) and (3.1.4b) give the MacCormack results for the 
same sets of conditions as figures (3.1.3a) and (3.1.3b).
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Figure (3.1.3a):  Lax-Wendroff results after 500 iterations for 
l = 0.9.
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Figure (3.1.3b):  Lax-Wendroff results after just 70 iterations 
for l = 1.1.
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Figure (3.1.4b):  MacCormack results after just 70 iterations 
for l = 1.1.
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Figure (3.1.4a):  MacCormack results after 500 iterations for 
l = 0.9.
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(3.1.5) Second Order  Monotonicity Preserving Scheme Results:
This routine was found to perform well, but as show in figure (3.1.5a), the wave profile begins to 
deform after a few thousand iterations (although reducing l to 1/2 gave some improvement).  The 
stability condition was confirmed, with high gradient areas leading to dispersion for |l| > 1.0 (see figure 
3.1.5b)).

(3.1.6) Third Order  Monotonicity Preserving Scheme Results:
The third order scheme was found to perform very well.  Figure (3.1.6a) illustrates how the algorithm 
gave very good results even after 5000 iterations.  The stability condition was again confirmed to be 
that |l| £ 1.0 (eg figure (3.1.6b)).
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Figure (3.1.5a):  Second order monotonicity preserving 
scheme results after 2000 iterations for l = 0.9.
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Figure (3.1.5b):  Second order monotonicity preserving 
scheme results after 40 iterations for l = 1.1.
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Figure (3.1.6a):  Third order monotonicity preserving scheme 
results after 5000 iterations for l = 0.9.

-1

-0.5

0

0.5

1

0 32 64 96

u

x

Sinusoidal Wave Transport:

"initsin/da"
"6AL09I2/DA"

Figure (3.1.6b):  Third order monotonicity preserving scheme 
results after 50 iterations for l = 1.1.
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(3.1.7) Flux Corrected Transpor t (Donor  Cell) Results:
Both the flux corrected transport schemes were found to work well for 5000 iteration runs.  Figure 
(3.1.7a) illustrated the stability of the donor cell form for |l| £ 1.0, and figure (3.1.7b) shows how the 
results improve for |l| £ 1/2 (ie when the algorithm is preserving positivity).

(3.1.8) Flux Corrected Transpor t (SHASTA) Results:
This scheme was found to give very good results, with 
the limit on stability playing an important role in the 
quality of the simulation.  Figure (3.1.8a) shows the 
algorithm's instability at |l| > Ö(7/12), with figure 
(3.1.8b) illustrating the stability for values of |l| below 
Ö(7/12) and figure (3.1.8c) showing the improvement in 
results for |l| £ 1/2.  
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Figure (3.1.7a):  Donor cell flux corrected transport scheme 
results after 5000 iterations for l = 0.9.
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Figure (3.1.7b):  Donor cell flux corrected transport scheme 
results after 5000 iterations for l = 0.5.
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Figure (3.1.8a):  SHASTA flux corrected transport scheme 
results after 5000 iterations for l = 0.9.
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Figure (3.1.8b):  SHASTA flux corrected transport scheme 
results after 5000 iterations for l = 0.6.
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Figure (3.1.8c):  SHASTA flux corrected transport scheme 
results after 5000 iterations for l = 0.5.
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(3.2a) Transport of Discontinuous (Square) Wave Profiles
This section consists of a series of results from the analysis of the 8 algorithms when applied to the 
transport of first-order discontinuous (square) waves.  Also, l was set to 0.5 throughout.

(3.2a.1) Centre Difference Results:

We have already established that the centre difference technique is completely unstable, and this was 
again found to be the case (see fig. 3.2a.1), although the algorithm failed even earlier than before.

(3.2a.2) First Order  Upwind Results:

This scheme was found to very quickly dissolve the square wave profile and after 500 iterations had 
produced a sinusoidal profile suffering from significant diffusion (figure (3.2a.2)).

(3.2a.3) Lax-Wendroff Results:

Although this algorithm had previously performed well, the discontinuities in the profile quickly (after 
50 iterations) lead to significant dispersion (figure (3.2a.3)), eventually leading to a smooth wave 
profile. 

(3.2a.4) MacCormack:

This algorithm produced results almost exactly the same as those produced by the Lax-Wendroff 
algorithm (see fig. (3.2a.4)).

• Page 11 •

- Computational Fluid Dynamics Assignment

Figure (3.2a.1):  Centre difference results after 10 iterations 
for square waves.
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Figure (3.2a.2):  First order upwind results after 500 iterations 
for square waves.
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Figure (3.2a.3):  Lax-Wendroff results after 50 iterations for 
square waves.
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Figure (3.2a.4):  MacCormack results after 50 iterations for 
square waves.
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(3.2a.5) Second Order  Monotonicity Preserving Results:
While this routine performed better than the pervious algorithms, there was still significant lop-sided 
deformation after 500 iterations (see fig. (3.2a.5)).

(3.2a.6) Third Order  Monotonicity Preserving Results:
This routine performed better than the second order code, with only slight deformation of the wave 
profile due to the initial effect of the artificial dissapation (see fig. (3.2a.6)).  The routine was found to 
still give reasonable results even after 5000 iterations.

(3.2a.7) Flux Corrected Transpor t (Donor  Cell) Results:
As figure (3.2a.7) shows, this routine performed well, and in fact dealt with the shock as well as the 
third order monotonicity preserving scheme.

(3.2a.8) Flux Corrected Transpor t (SHASTA) Results:
This algorithm also coped well (see fig. (3.2a.8)),  indeed just as well as the donor cell flux corrected 
transport and third order monotonicity preserving schemes.
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Figure (3.2a.5):  Second order monotonicity preserving 
scheme results after 500 iterations for square waves.
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Figure (3.2a.8):  SHASTA flux corrected transport scheme 
results after 500 iterations for square waves.
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Figure (3.2a.7):  Donor cell flux corrected transport scheme 
results after 500 iterations for square waves.
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Figure (3.2a.6):  Third order monotonicity preserving scheme 
results after 500 iterations for square waves.

-1

-0.5

0

0.5

1

0 32 64 96

u

x

Square Wave Transport:

"initsq/dat"
"6AI2/DAT"



(3.2b) Transport of Discontinuous (Triangular) Wave Profiles
This section consists of a series of results from the analysis of the 8 algorithms when applied to the 
transport of second-order discontinuous (triangular) waves.  As in the case of the square wave transport 
analysis, l was set to 0.5 throughout.

(3.2b.1) Centre Difference Results:

Again this algorithm was found to be completely unstable (see fig. 3.2b.1).

(3.2b.2) First Order  Upwind Results:

In this case, the routine performed better than with square waves, but still tended to quickly reduce the 
wave profile to a sinusoidal form (figure (3.2b.2)).

(3.2b.3) Lax-Wendroff Results:

While the dispersive properties of this algorithm did lead to some softening of the wave profile (see 
figure (3.2b.3)), the profile was stable for a few hundreds of iterations, and did not tend to a sinusoidal 
wave profile. 

(3.2b.4) MacCormack:

Yet again this routine produced results very similar to those of the Lax Wendroff algorithm (see fig. 
(3.2b.4)).
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Figure (3.2b.1):  Centre difference results after 30 iterations 
for triangular waves.
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Figure (3.2b.2):  First order upwind results after 100 iterations 
for triangular waves.
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Figure (3.2b.3):  Lax-Wendroff results after 200 iterations for 
triangular waves.
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Figure (3.2b.4):  MacCormack results after 200 iterations for 
triangular waves.
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(3.2b.5) Second Order  Monotonicity Preserving Results:
The lop-sided deformation apparently inherent in this algorithm appeared again for triangular waves, 
becoming significant after 200 iterations (see fig. (3.2b.5)).

(3.2b.6) Third Order  Monotonicity Preserving Results:
Again this routine was found to perform well, with a slight rounding of the corners of the triangular 
waves allowing the profile to be consistent for a few hundred (see fig. (3.2b.6)) or even a few thousand 
iterations.

(3.2b.7) Flux Corrected Transpor t (Donor  Cell) Results:
Again this routine performed well (see fig. 3.2b.7)), and again it was fractionally better than the third 
order monotonicity preserving scheme.

(3.2a.8) Flux Corrected Transpor t (SHASTA) Results:
The SHASTA routine also coped well (see fig. (3.2b.8)), and again was not noticeably better than the 
donor cell flux corrected transport scheme.
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Figure (3.2b.5):  Second order monotonicity preserving 
scheme results after 200 iterations for triangular waves.
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Figure (3.2b.6):  Third order monotonicity preserving scheme 
results after 500 iterations for triangular waves.
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Figure (3.2b.7):  Donor cell flux corrected transport scheme 
results after 500 iterations for triangular waves.
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Figure (3.2b.8):  SHASTA flux corrected transport scheme 
results after 500 iterations for triangular waves.

-1

-0.5

0

0.5

1

0 32 64 96

u

x

Triangular Wave Transport:

"inittri/da"
"8AI1/DAT"



(4)  Conclusions
When analysing the results of this assignment, it is important to remember that in realistic fluid flow 
situations, the actual problem would be more complex than the simple advection equation, (the main 
complication being that the velocity coefficient 'a' would no longer be constant).  

(4.1) Smooth Wave Transpor t:
Clearly, the centre difference algorithm has no practical use.  Also, while the first order upwind routine 
was stable, the effect of diffusion is too great for it to be used for any problem that requires any more 
than a few hundred iterations.  The Lax-Wendroff and MacCormack routine both performed well under 
smooth conditions, and while other the routines also worked well, the cost of implementation brings no 
significant improvement in results.  The straightforward second order routines are simpler (and so more 
flexible), quicker and less restricting (in terms of allowed values of l).

(4.2) Square Wave Transpor t:
As one would expect from the theory, all those algorithms without some form of switched artificial 
dissipation performed badly under shock conditions.  However, all of the algorithms with some form of 
artificial dissipation performed well, with the third order monotonicity preserving scheme and both flux 
corrected transport schemes all performed excellently.  From this it is clear that for any fluid simulation 
running close to or above the sound speed for that fluid, one of the aforementioned three routines 
should be used.  Unfortunately, due to the simplicity of this assignment, it is not possible to test the 
algorithms hard enough to determine which gives the highest accuracy.

(4.3) Tr iangular  Wave Transpor t:
Predictably, the centre difference and first order upwind schemes both performed badly for triangular 
wave transport, and the monotonicity preserving and flux corrected transport schemes all performed 
well.  The main point note is that under these conditions, the Lax-Wendroff and MacCormack routines 
both performed acceptably well, which implies that for situations where shock are not involved but 
there may be other sharp changes, such as a boundary layer, then the Lax-Wendroff/MacCormack 
approch will cope acceptably well and give reliable results (whilst being simple, flexible and fast).  
However, if such sharp changes are dominant in a simulation, or those sharp changes are to be analysed 
to a high degree of accuracy, then one of the routines recommended for shock conditions should be 
used.
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Appendix A:  FORTRAN program code:
C      PROGRAM CFD Assi gnment :
C      Andr ew Jackson:  v1. 1 4t h Mar ch 1997.
C
C Def i ne common var i abl es:
      PARAMETER ( MS=128)
      DI MENSI ON U( - 4: MS+4) , U1( - 4: MS+4) , U2( - 4: MS+4)
      COMMON / CFDREL/  U, U1, U2, l am, ALG, i t er s
      REAL* 8 U, U1, U2, l am 
      I NTEGER* 2 K
      I NTEGER I , ALG, i t er s, st ps
C      
      K=0
      WRI TE( * , * )  ‘ CFD Assi gnment : ’
      WRI TE( * , * )  ‘ ~~~~~~~~~~~~~~~’

WRI TE( * , * )  ‘ Ent er  l ambda: ’
READ( * , * )  l am
WRI TE( * , * )  ‘  ‘
WRI TE( * , * )  ‘ ( 1)  -  Cent r ed di f f er ence. ’
WRI TE( * , * )  ‘ ( 2)  -  Fi r st  or der  upwi nd/ donor  cel l . ’
WRI TE( * , * )  ‘ ( 3)  -  Lax- Wendr of f . ’
WRI TE( * , * )  ‘ ( 4)  -  MacCor mack. ’
WRI TE( * , * )  ‘ ( 5)  -  2nd or der  monot oni c i t y pr eser vi ng. ’
WRI TE( * , * )  ‘ ( 6)  -  3r d or der  monot oni c i t y pr eser vi ng. ’
WRI TE( * , * )  ‘ ( 7)  -  FCT donor  cel l . ’
WRI TE( * , * )  ‘ ( 8)  -  FCT SHASTA. ’
READ( * , * )  ALG

C
      st ps=10
      CALL I ni t Conds
      CALL Pl ot Sys
      CALL GET_KEY@( K)
      I F ( K. EQ. Z’ 13B’ )  GOTO 777
  666    DO I =1, st ps
         CALL Fl uxCal c
        ENDDO
        I F ( i t er s. EQ. 10* st ps)  st ps=10* st ps
        CALL Pl ot Sys
        CALL GET_KEY@( K)
      I F ( K. NE. Z’ 13B’ )  GOTO 666
 777  CALL TEXT_MODE@
      STOP
      END
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
      SUBROUTI NE I ni t Conds
C Def i ne common var i abl es:
      PARAMETER ( MS=128)
      DI MENSI ON U( - 4: MS+4) , U1( - 4: MS+4) , U2( - 4: MS+4)
      COMMON / CFDREL/  U, U1, U2, l am, ALG, i t er s
      REAL* 8 U, U1, U2, l am, t mp 
      I NTEGER I , ALG, i t er s, wave
C
      WRI TE( * , * )  ‘ ( 1)  -  Si n wave pr of i l e. ’
      WRI TE( * , * )  ‘ ( 2)  -  Squar e wave pr of i l e. ’
      WRI TE( * , * )  ‘ ( 3)  -  Tr i angul ar  wave pr of i l e. ’
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      READ( * , * )  wave
C
      i t er s=0
      DO I =- 4, MS+4
C Si n wave:
       I F ( wave. EQ. 1)  THEN
        U( I ) =SI N( 2. 0d0* ( I - 1) * 2. 0d0* 3. 141592654/ ( MS- 1) )
       ENDI F
C Squar e wave:
       I F ( wave. EQ. 2)  THEN
        t mp=REAL( I - 1) / REAL( MS- 1)
        t mp=t mp- I NT( t mp)
        I F ( t mp. LT. 0. 25 . OR.  ( t mp. GT. 0. 5. AND. t mp. LT. 0. 75) )  THEN
        U( I ) =- 1. 0d0
        ELSE
         U( I ) =+1. 0d0
        ENDI F
       ENDI F

C Tr i angl i er  wave:
       I F ( wave. EQ. 3)  THEN
        t mp=REAL( I - 1) / REAL( MS- 1)
        t mp=t mp- I NT( t mp)
        I F ( t mp. LT. 0. 25)  THEN
        U( I ) =8. 0d0* ( t mp- 0. 125)
        ELSEI F ( t mp. GE. 0. 25 . AND.  t mp. LT. 0. 5)  THEN
         U( I ) =- 8. 0d0* ( t mp- 0. 125- 0. 25)
        ELSEI F ( t mp. GE. 0. 5 . AND.  t mp. LT. 0. 75)  THEN
         U( I ) =8. 0d0* ( t mp- 0. 125- 0. 25- 0. 25)
        ELSEI F ( t mp. GE. 0. 75)  THEN
         U( I ) =- 8. 0d0* ( t mp- 0. 125- 0. 25- 0. 25- 0. 25)
        ENDI F
       ENDI F
      ENDDO
C
      RETURN
      END
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
      SUBROUTI NE Pl ot Sys
C Def i ne common var i abl es:
      PARAMETER ( MS=128)
      DI MENSI ON U( - 4: MS+4) , U1( - 4: MS+4) , U2( - 4: MS+4)
      COMMON / CFDREL/  U, U1, U2, l am, ALG, i t er s
      REAL* 8 U, U1, U2, l am
      I NTEGER* 2 I H, I V, I COL
      I NTEGER I , ALG, i t er s, of f set , J
C
      OPEN( UNI T=21, FI LE=’ CFD. DAT’ , STATUS=’ UNKNOWN’ )
      WRI TE( 21, * )  ‘ # Resul t s f r om al gor i t hm number  ‘ , ALG, ’ . ’
      WRI TE( 21, * )  ‘ # Af t er  ‘ , i t er s, ’  i t er at i ons. ’
      WRI TE( 21, * )  ‘ # l ambda = ‘ , l am
      WRI TE( 21, * )  ‘ #’
      CALL VGA@
      I COL=15
C
      WRI TE( * , * )  i t er s
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      of f set =i t er s* l am
      of f set =of f set - I NT( of f set / ( MS- 1) ) * ( MS- 1)
C
      DO I =1, MS- 1
       J=I +of f set
       I F ( J. GT. MS- 1)  J=J- ( MS- 1)
       I F ( J. LT. 1)  J=J+( MS- 1)
       I H=400* I / MS
       I V=200- 50* U( J)
       WRI TE( 21, * )  I , U( J)
       CALL SET_PI XEL@( I H, I V, I COL)
      ENDDO
C
      I V=200
      DO I =1, MS- 1, 2
       I H=400* I / MS
       CALL SET_PI XEL@( I H, I V, I COL)
      ENDDO
C
      I V=250
      DO I =1, MS- 1, 4
       I H=400* I / MS
       CALL SET_PI XEL@( I H, I V, I COL)
      ENDDO
C
      CLOSE( UNI T=21)
      RETURN
      END
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
      SUBROUTI NE Fl uxCal c
C Def i ne common var i abl es:
      PARAMETER ( MS=128)
      DI MENSI ON U( - 4: MS+4) , U1( - 4: MS+4) , U2( - 4: MS+4) , G( - 1: MS+1)
      DI MENSI ON D( - 1: MS+1)
      COMMON / CFDREL/  U, U1, U2, l am, ALG, i t er s
      REAL* 8 U, U1, U2, l am, D, s, del t a, pl am, nl am, del t 2, del t 3
      REAL* 8 s1, s2
      I NTEGER I , ALG, i t er s

C Cent r e di f f er ence:
      I F ( ALG. EQ. 1)  THEN
       DO I =1, MS- 1
        U1( I )  = U( I )  -  0. 5d0* l am* ( U( I +1) - U( I - 1) )
       ENDDO

C Fi r st  or der  upst r eam:
      ELSEI F ( ALG. EQ. 2)  THEN
       DO I =1, MS- 1
        I F ( l am. GT. 0. 0)  U1( I )  = U( I )  -  l am* ( U( I ) - U( I - 1) )
        I F ( l am. LT. 0. 0)  U1( I )  = U( I )  -  l am* ( U( I +1) - U( I ) )
       ENDDO

C Lax- Wendr of f :
      ELSEI F ( ALG. EQ. 3)  THEN
       DO I =1, MS- 1
        U1( I ) =U( I ) - 0. 5d0* l am* ( U( I +1) - U( I - 1) ) +
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     +            0. 5d0* l am* l am* ( U( I +1) - 2. 0d0* U( I ) +U( I - 1) )
       ENDDO

C MacCor mack:
      ELSEI F ( ALG. EQ. 4)  THEN
       DO I =1, MS- 1
        U2( I )  = U( I )  -  l am* ( U( I +1) - U( I ) )
       ENDDO
       U2( MS) =U2( 1)
       U2( 0) =U2( MS- 1)
       DO I =1, MS- 1
        U1( I )  = 0. 5d0* ( U( I ) +U2( I )  -  l am* ( U2( I ) - U2( I - 1) ) )
       ENDDO

C 2nd/ 3r d or der  monot oni c i t y pr eser vi ng:
      ELSEI F ( ALG. EQ. 5 . OR.  ALG. EQ. 6)  THEN
       DO I =0, MS- 1
c 2nd or  3r d or der  appr ox:
        I F ( ALG. EQ. 5)  THEN
         D( I ) =U( I +1) - U( I )
        ELSEI F ( ALG. EQ. 6)  THEN
         I F ( l am. GT. 0. 0)  THEN
          D( I ) =U( I +1) - U( I ) - ( 1. 0d0+l am) * ( U( I +1) - 2. 0d0* U( I ) +U( I - 1) ) / 3. 0d0
         ELSE
          D( I ) =U( I ) - U( I - 1) - ( 1. 0d0- l am) * ( U( I ) - 2. 0d0* U( I +1) +U( I +2) ) / 3. 0d0
         ENDI F
        ENDI F
c Fl ux cal c:
        I F ( l am. GT. 0. 0)  THEN
         s1=DSI GN( 1. 0d0, U( I +1) - U( I ) )
         s2=DSI GN( 1. 0d0, U( I ) - U( I - 1) )
         I F ( s1. GT. s2 . OR.  s1. LT. s2)  THEN
          s=0. 0d0
         ELSE
          s=s2
         ENDI F
         D( I ) =ABS( D( I ) )
         D( I ) =s* MI N( D( I ) , 2. 0d0* ABS( U( I +1) - U( I ) ) , 2. 0d0* ABS( U( I ) - U( I - 1) ) )
        ELSE
         s1=DSI GN( 1. 0d0, U( I +2) - U( I +1) )
         s2=DSI GN( 1. 0d0, U( I +1) - U( I ) )
         I F ( s1. GT. s2 . OR.  s1. LT. s2)  THEN
          s=0. 0d0
         ELSE
          s=s1
         ENDI F
         D( I ) =s* MI N( ABS( D( I ) ) , 2. 0d0* ABS( U( I +2) - U( I +1) ) ,
     +                        2. 0d0* ABS( U( I +1) - U( I ) ) )
        ENDI F
       ENDDO
C
       DO I =0, MS- 1
         I F ( l am. GT. 0. 0)  G( I ) =U( I ) +0. 5d0* ( 1. 0d0- l am) * D( I )
         I F ( l am. LE. 0. 0)  G( I ) =U( I +1) +0. 5d0* ( 1. 0d0+l am) * D( I )
       ENDDO

C Fl ux cor r ect ed t r anspor t :  Donor  cel l  & SHASTA:
      ELSEI F ( ALG. EQ. 7 . OR.  ALG. EQ. 8)  THEN
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       I F ( ALG. EQ. 7)  THEN
        pl am=MAX( 0. 0d0, l am)
        nl am=MI N( 0. 0d0, l am)
        DO I =- 1, MS+1
         U2( I ) =U( I ) - ( nl am* U( I +1) +( pl am- nl am) * U( I ) - pl am* U( I - 1) )
        ENDDO
       ELSE
        pl am=0. 5d0- l am
        pl am=pl am* pl am
        nl am=0. 5d0+l am
        nl am=nl am* nl am
        DO I =- 1, MS+1
         U2( I ) =U( I ) +0. 5d0* ( pl am* U( I +1) - ( nl am+pl am) * U( I ) +nl am* U( I - 1) )
        ENDDO
       ENDI F
       U2( MS) =U2( 1)
       U2( MS+1) =U2( 2)
       U2( MS+2) =U2( 3)
       U2( 0) =U2( MS- 1)
       U2( - 1) =U2( MS- 2)
       U2( - 2) =U2( MS- 3)
       DO I =0, MS- 1
        I F ( ALG. EQ. 7)  THEN
         D( I ) =ABS( 0. 5d0* ABS( l am) * ( 1. 0d0- ABS( l am) ) * ( U2( I +1) - U2( I ) ) )
        ELSE
         D( I ) =ABS( ( U2( I +1) - U2( I ) ) / 8. 0d0)
        ENDI F
        del t 3=U2( I ) - U2( I - 1)
        del t a=U2( I +1) - U2( I )
        del t 2=U2( I +2) - U2( I +1)
        s=DSI GN( 1. 0d0, del t a)
        D( I ) =s* MAX( 0. 0d0, MI N( s* del t 3, D( I ) , s* del t 2) )
       ENDDO
       DO I =1, MS- 1
        U1( I ) =U2( I ) - ( D( I ) - D( I - 1) )
       ENDDO
      ENDI F

      I F ( ALG. EQ. 5 . OR.  ALG. EQ. 6)  THEN
C Fl ux cal cul at i on:
       DO I =1, MS- 1
        U1( I ) =U( I ) - l am* ( G( I ) - G( I - 1) )
       ENDDO
      ENDI F

C Move new U1 i nt o ol d U:
      DO I =1, MS- 1
       U( I ) =U1( I )
      ENDDO

C Fi xi ng per i odi c boundar y:
      U( MS) =U( 1)
      U( MS+1) =U( 2)
      U( MS+2) =U( 3)
      U( 0) =U( MS- 1)
      U( - 1) =U( MS- 2)
      U( - 2) =U( MS- 3)
C I ncr ement  i t er at i on count er :
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      i t er s=i t er s+1
      RETURN
      END
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
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